DATALUTION:

A TOOL FOR CONTINUOUS
SCHEMA EVOLUTION

IN NOSQL-BACKED

WEB APPLICATIONS

STEFANIE SCHERZINGER
STEPHANIE SOMBACH
KATHARINA WIECH
MEIKE KLETTKE

UTA STORL

)alution

development IDE

t commit

code repository

Development Environment

development IDE

t commit
[

vO

code repository

Devérc?pment Environment

development IDE

1 commit

vO

vO

code repository

Development Environment

Production Environment

vl

developmé]t IDé
t commit

—

vO - —2
vO D a aS vO — y
V 1 ~ . I

Development Environment Production Environment

code repository

development IDE

1 commit

vl

deploy

vO

vl

code repository

Development Environment

Production Environment

DESIDERATUM

The application code declares a schema.
The application code evolves.

Thus, we need to address
schema evolution:

- Eager
- Lazy with Object-NoSQL Mappers
- Lazy with Datalution

EXAMPLE: GAMING
APPLICATION

Release 1

* Player(ID, NAME)
e Mission(ID, TITLE, PID)

Release 2

* Players carry a property SCORE:
add Player.SCORE = 50

Release 3

* Missions carry their player‘'s score
copy Player.SCORE to Mission
where Player.ID = Mission.PID

EAGER MIGRATION

Original schema imposed by New release, Updating Lisa's player: New release , get(Mission, 100) get(Mission, 101)

the application: changing the schema: put (Player (1, "Lisa", 100)) changing the schema:
Player(ID, NAME), add Player.SCORE = 50 copy Player.SCORE to Mission
Mission(ID, TITLE, PID) where Player.ID = Mission.PID

tsl ... ts5 ts6 ts7 ts8 ts9 ts10 _ lodical clock

Player

{uIDu: 1,
"NAME": "Lisa",
"ts": ts1}

{"ID": 2,
"NAME": "Bart",
"ts": ts2}

{"ID": 3,
"NAME": "Ralf",
"ts": ts3}

{"ID": 100,
"TITLE": "tower",
"PID": 1,

"ts": ts4}

Player

Player

Mission

{"ID": 101 Mission

"TITLE": "manor",
"PID": 2,
"ts": ts5}

EAGER MIGRATION

Original schema imposed by
the application:

Player(ID, NAME),
Mission(ID, TITLE, PID)

New release,
changing the schema:
add Player.SCORE = 50

tsl ... ts5

{s6

Updating Lisa's player:
put (Player (1, "Lisa", 100))

ts7

New release ,

changing the schema:

copy Player.SCORE to Mission
where Player.ID = Mission.PID

get(Mission, 100)

get(Mission, 101)

ts8

ts9

ts10

lodical clock

Player)
{IIIDII: 1, y
"NAME": "Lisa", =
"ts": ts1}

{"ID": 2,
"NAME": "Bart",
"ts": ts2}

Player

Player

{"ID": 1,

"NAME": 'Lisa",
"SCORE": 50
10" 2, Player

"NAME": 'Bart",

"SCORE": 50,

"ts": ts5}

D" 3, Player (10" 3, Player
"NAME": "Ralf", > "NAME": Ralf",
"ts": ts3} "SCORE": 50,
{1D™ 100, Mission k ts": ts6}
"TITLE": "tower",
"PID": 1,
"ts": ts4}
{"ID”: 101, Mission
"TITLE": "manor",
"PID": 2,

EAGER MIGRATION

Original schema imposed by New release, Updating Lisa's player: New release , get(Mission, 100) get(Mission, 101)

the application: changing the schema: put (Player (1, "Lisa", 100)) changing the schema:

Player(ID, NAME), add Player.SCORE = 50 copy Player.SCORE to Mission

Mission(ID, TITLE, PID) where Player.ID = Mission.PID

tsl ... ts5 1s6 ts7 ts8 ts9 ts10 _logical clock
Player)

Player

D" 1, {10 1, D" 1, Player

"NAME": "Lisa", "NAME": 'Lisa", "NAME": "Lisa",
"ts": ts1} "SCORE": 50 "SCORE": 100,
1D 2, Player 10" 2, Player ts": ts7}
"NAME": "Bart", "NAME": 'Bart",
"ts": ts2} "SCORE": 50,

{'ID": 3, Player (10" 3, Player
"NAME": "Ralf", "NAME": Ralf",
"ts": ts3} "SCORE": 50,
{'ID": 100, Mission ts": ts6}
"TITLE": "tower",
"PID": 1,
"ts": ts4}
{"ID": 101, Mission
"TITLE": "manor",

"PID": 2,
"ts": ts5}

EAGER MIGRATION

Original schema imposed by
the application:

Player(ID, NAME),
Mission(ID, TITLE, PID)

tsl ... ts5

New release,
changing the schema:
add Player.SCORE = 50

Updating Lisa's player:
put (Player (1, "Lisa", 100))

{s6

New release ,

changing the schema:

copy Player.SCORE to Mission
where Player.ID = Mission.PID

get(Mission, 100)

get(Mission, 101)

ts8

ts9

ts10 _ lodical clock

D™ 1 Player)

"NAME": "Lisa",

"ts": ts1}
{IIIDII: 2, Player
"NAME": "Bart",
"ts": ts2}

Player

{”lD“: 1'
"NAME": 'Lisa",
"SCORE": 50

10" 2, Player
"NAME": 'Bart",
"SCORE": 50,

{"lD": 3,
"NAME": Ralf",
"SCORE": 50,

"ts": ts6}

Player

D" 1, Player
"NAME": "Lisa",
"SCORE": 100,
"ts": ts7}

{'ID": 3, Player

"NAME": "Ralf",

"ts": ts3} N
{"ID": 100, Mission
"TITLE": "tower",
"PID": 1,

"ts": ts4}
{"ID": 101, Mission
"TITLE": "manor",

"PID": 2,
"ts": ts5} J

{1D™ 100, Mission

"TITLE": "tower",

"PID": 1,

2| "SCORE": 100,

"ts": ts8}
(10" 101, Mission
"TITLE": "manor”,
"PID": 2,
"SCORE": 50,
'ts": ts8}

EAGER MIGRATION

Original schema imposed by
the application:

Player(ID, NAME),
Mission(ID, TITLE, PID)

New release,
changing the schema:
add Player.SCORE = 50

Updating Lisa's player:
put (Player (1, "Lisa", 100))

New release ,

changing the schema:

copy Player.SCORE to Mission
where Player.ID = Mission.PID

get(Mission, 100)

get(Mission, 101)

tsl ... ts5 ts6 ts7 ts8 ts9 ts10 logical clock
Player) A

D" 1, ayer D" 1, Player (o1, Player

"NAME": "Lisa", "NAME": 'Lisa", "NAME": "Lisa",

"ts": ts1} "SCORE": 50 "SCORE": 100,
1D 2, Player 10" 2, Player ts": ts7}
"NAME": "Bart", "NAME": 'Bart",
"ts": ts2} "SCORE": 50,

"ts": ts6}

Player

{ulDu: 3,
"NAME": Ralf",
"SCORE": 50,

{'ID": 3, Player

"NAME": "Ralf",

"ts": ts3} N
{"ID": 100, Mission
"TITLE": "tower",
"PID": 1,

"ts": ts4}
{"ID": 101, Mission
"TITLE": "manor",

"PID": 2,
"ts": ts5} J

{1D™ 100, Mission\

"TITLE": "tower",

"PID": 1,

2| "SCORE": 100,

"ts": ts8}
(10" 101, Mission
"TITLE": "manor”,
"PID": 2,
"SCORE": 50,
'ts": ts5}

EAGER MIGRATION

Original schema imposed by
the application:

Player(ID, NAME),
Mission(ID, TITLE, PID)

New release,
changing the schema:
add Player.SCORE = 50

Updating Lisa's player:
put (Player (1, "Lisa", 100))

New release ,

changing the schema:

copy Player.SCORE to Mission
where Player.ID = Mission.PID

get(Mission, 100)

get(Mission, 101)

tsl ... ts5 ts6 ts7 ts8 ts9 ts10 logical clock
Player) A

D" 1, ayer D" 1, Player (o1, Player

"NAME": "Lisa", "NAME": 'Lisa", "NAME": "Lisa",

"ts": ts1} "SCORE": 50 "SCORE": 100,
1D 2, Player 10" 2, Player ts": ts7}
"NAME": "Bart", "NAME": 'Bart",
"ts": ts2} "SCORE": 50,

D" 3, Player (10" 3, Player
"NAME": "Ralf", "NAME": Ralf",
"ts": ts3} ~ "SCORE": 50,
{1D™ 100, Mission ts": ts6}
"TITLE": "tower",
"PID": 1,
"ts": ts4}
{"ID”: 101, Mission
"TITLE": "manor",
"PID": 2,
"ts": ts5} J

{1D™ 100, Mission\

"TITLE": "tower",

"PID": 1,

2| "SCORE": 100,

"ts": ts8}
(10" 101, Mission
"TITLE": "manor”,
"PID": 2,
"SCORE": 50,
'ts": ts8}

LAZY EVOLUTION

WITH OBJECT-NOSQL MAPPERS

Original schema imposed by
the application:

@Entity

class Player{

@Id
Integer ID;

String NAME;;

New release,
changing the schema:

}

-7

@Entity
class Player{

@Id
Integer ID;

String NAME;
Integer SCORE = 50;

Convenient "quick fix"
for simple changes.

Long-term:
Maintenance
nightmare.

put(...) logical clock

Player
{"ID": 1, y
"NAME": "Lisa"
1

10" 2, Player
"NAME": "Bart"

1
10" 3, Player
"NAME": "Ralf"

}

}

¢

Player
'ID": 1,
"NAME": 'Lisa",
"SCORE": 50

LAZY MIGRATION
IN DATALUTION

Original schema imposed by New release, Updating Lisa's player: New release , get(Mission, 100) get(Mission, 101)
the application: changing the schema: put (Player (1, "Lisa", 100)) changing the schema:

Player(ID, NAME), add Player.SCORE = 50 copy Player.SCORE to Mission
Mission(ID, TITLE, PID) where Player.ID = Mission.PID

tsl ... ts5 ts6 ts7 ts8 ts9 ts10 _ lodical clock

Player

{”ID": 1,
"NAME": "Lisa",
"ts": ts1}

{"ID": 2,
"NAME": "Bart",
"ts": ts2}

{"ID": 3,
"NAME": "Ralf",
"ts": ts3}

{"ID": 100,
"TITLE": "tower",
"PID": 1,

"ts": ts4}

Player

Player

Mission

{"ID": 101 Mission

"TITLE": "manor",
"PID": 2,
"ts": ts5}

LAZY MIGRATION
IN DATALUTION

Original schema imposed by New release, Updating Lisa's player: New release , get(Mission, 100) get(Mission, 101)
the application: changing the schema: put (Player (1, "Lisa", 100)) changing the schema:

Player(ID, NAME), add Player.SCORE = 50 copy Player.SCORE to Mission
Mission(ID, TITLE, PID) where Player.ID = Mission.PID

tsl ... ts5 ts6 ts7 ts8 ts9 ts10 _ lodical clock

Player

{”ID": 1,
"NAME": "Lisa",
"ts": ts1}

{"ID": 2,
"NAME": "Bart",
"ts": ts2}

{"ID": 3,
"NAME": "Ralf",
"ts": ts3}

{"ID": 100,
"TITLE": "tower",
"PID": 1,

"ts": ts4}

Player

Player

Mission

{"ID": 101 Mission

"TITLE": "manor",
"PID": 2,
"ts": ts5}

LAZY MIGRATION
IN DATALUTION

Original schema imposed by New release, Updating Lisa's player: New release , get(Mission, 100) get(Mission, 101)
the application: changing the schema: put (Player (1, "Lisa", 100)) changing the schema:
Player(ID, NAME), add Player.SCORE = 50 copy Player.SCORE to Mission
Mission(ID, TITLE, PID) where Player.ID = Mission.PID
tsl ... ts5 1s6 ts7 ts8 ts9 ts10 _logical clock
Player
D" 1, Yy D" 1, Player
"NAME": "Lisa", "NAME": "Lisa",
"ts": ts1} "SCORE": 100,
1D 2, Player ts": ts7}
"NAME": "Bart",
"ts": ts2}
{'ID": 3, Player
"NAME": "Ralf",
"ts": ts3}
{1D™ 100, Mission
"TITLE": "tower",
"PID": 1,
"ts": ts4}
{"ID": 101, Mission
"TITLE": "manor",
"PID": 2,

"ts": ts5}

LAZY MIGRATION
IN DATALUTION

Original schema imposed by New release, Updating Lisa's player: New release , get(Mission, 100) get(Mission, 101)
the application: changing the schema: put (Player (1, "Lisa", 100)) changing the schema:
Player(ID, NAME), add Player.SCORE = 50 copy Player.SCORE to Mission
Mission(ID, TITLE, PID) where Player.ID = Mission.PID
tsl ... ts5 1s6 ts7 ts8 ts9 ts10 _logical clock
Player
D" 1, Yy D" 1, Player
"NAME": "Lisa", "NAME": "Lisa",
"ts": ts1} "SCORE": 100,
1D 2, Player ts": ts7}
"NAME": "Bart",
"ts": ts2}
{'ID": 3, Player
"NAME": "Ralf",
"ts": ts3}
{1D™ 100, Mission
"TITLE": "tower",
"PID": 1,
"ts": ts4}
{"ID": 101, Mission
"TITLE": "manor",
"PID": 2,

"ts": ts5}

LAZY MIGRATION
IN DATALUTION

Original schema imposed by New release, Updating Lisa's player: New release , get(Mission, 100) get(Mission, 101)
the application: changing the schema: put (Player (1, "Lisa", 100)) changing the schema:
Player(ID, NAME), add Player.SCORE = 50 copy Player.SCORE to Mission
Mission(ID, TITLE, PID) where Player.ID = Mission.PID
tsl ... ts5 ts6 ts7 ts8 ts9 ts10 _logical clock
e P SN Mission
{1, oe g R ' {'ID": 100, :
"NAME": "Lisa", "NAME": "Lisa", lazy migration . “TITLE™ “tower",
"ts”: ts1} "SCORE": 100, > "PID "1, !
A Player "ts": ts7} 1 "SCORE": 100,
{"ID": 2, | g™ ts8
"NAME": "Bart", . "ts":1s8})

“ts™its2} | e e
{'ID": 3, Player

"NAME": "Ralf",
"ts": ts3}

{"ID": 100,
"TITLE": "tower",
"PID": 1,

"ts": ts4}

Mission)

{"ID": 101 Mission

"TITLE": "manor",
"PID": 2,
"ts": ts5}

LAZY MIGRATION
IN DATALUTION

Original schema imposed by
the application:

Player(ID, NAME),
Mission(ID, TITLE, PID)

New release,
changing the schema:
add Player.SCORE = 50

Updating Lisa's player:
put (Player (1, "Lisa", 100))

New release ,

get(Mission, 100)

get(Mission, 101)

changing the schema:
copy Player.SCORE to Mission
where Player.ID = Mission.PID

tsl ... ts5 is6 ts7 ts8 ts9 ts10 _logical clock
Player) Y ission”
{"ID": 1, ayer D" 1, Player | {ID™: 100, Mission \:
"NAME": "Lisa", "NAME": "Lisa", lazv miaration . "TITLE": "tower",
sttsl}y O | "SCORE": 100, y g > "PID "1, :
- Player ‘ “ts": ts7 "SCORE": 100
{"ID": 2, Y [ppm g, PYery } e !
" v " I ! ts": ts8 }
NAME™: "Bart",) "NAME": "Bart’, 1 \ d
"ts": ts2} ! "SCORE" 50,
{'ID": 3, Player l\\ ts": ts6} ’ll
"NAME": "Ralf, [T TTTTTTTT
"ts": ts3} N
{"ID": 100, Mission
Sl CUEE complete {"ID": 101, Mission
mallaal lazy migration "TITLE":
"ts": ts4} > "manor”,
— Mission "PID": 2,
E D" 101 m "SCORE": 50,
TITLE": "manor", "ts" 158}
"PID": 2, :
"ts": ts5}

DATALOG MODEL
(NONRECURSIVE, STRATIFIED)

al: put(Player(1, "Lisa"));
a2: put(Player(1, "Lisa S."));

ri: Player(1, "Lisa", tsl).
r2: Player(1, "Lisa S.", ts2).

a3: get("Player", 1);

r3: legacyPlayer(ID, TS) :-
Player(ID, _, TS), Player(ID, _, NTS), TS < NTS.

i rd: latestPlayer(ID, TS) :-]
! Player(ID, _, TS), not legacyPlayer(ID, TS).
i r5: getPlayer(ID, NAME, TS) :-
|
|

Player (ID, NAME, TS), latestPlayer(ID, TS).

transient rule — derived facts not kept around for incremental evaluation

Let kind(r|(ID, P, ..., P,,) be the schema imposed by the current application release. ts denotes a fresh timestamp associated with release r.
1) add kind. P, 41 = v, where P, is a new property name and v i1s a default value (in the new version of the entity, /%, has value v):
kind[r + 1] (ID, P1,...,Pn, v, 1s) :- kind[r](ID, P1,...,Pn, OTS), latestkind[r|(ID, OTS).

ii) delete kind.P;
kind[r + 1|(ID, P1,...,P(i-1),P(i+1),...,Pn, t5) :- kind[r](ID, P1,...,Pn, OTS), latestkind[r|(ID, OTS).

Let kindS[r|(ID, Sy, ..., S») and kindT[r|(ID, T, ..., T}) be the current source and target schema imposed by the application.

iii) copy kindS.S; to kindT where kindS.ID = kindT.T;
kindT|r + 1](ID_T, T1,...,Tm, Si, ts) :- kindT[r](ID_T, T1,...,Tm, TS_T), latestkindT[r|(ID_T, TS_T),
kindS[r](ID_S, S1,...,8n, TS_S), latestkindS[r](ID_S, TS_S), ID_S = Tj.
kindT{r + 1](ID_T, T1,...,Tm, null, ts) : - kindT[r](ID_T, T1,...,Tm, TS_T), latestkindT{r](ID_T, TS_T),
not kindS[r|(ID_S, S1,...,Sn, TS_S), ID_S = Tj.
kindS[r + 1](ID, S1, ..., Sn, ts) :- kindS[r](ID, S1, ..., Sn, OTS), latestkind[r](ID, OTS).
iv) move kindS.S; to kindT where kindS.ID = kindT.T7;, with the same first two rules as for copy, as well as the following rule:
kindS[r + 1|(ID, S1,...,8(i-1),8(i+1),...,Sn, ts) :- kindS[r](ID, S1,...,Sn, OTS), latestkind[r|(ID, OTS).

DATALUTION:
DATALOG-BASED

Eager migration: Incremental bottom-up evaluation
Lazy migration: Incremental top-down evaluation

« Employing sideways information passing strategies
« Exploiting uniqueness of identifiers

Both strategies always yield the same result

Progress:

 Theory in DBPL@SPLASH'15 paper
 Demo of PoC Datalution at QUDOS'16
e Ongoing: Integration with NoSQL data store

)alution

	Datalution: �A Tool for Continuous Schema Evolution�in NoSQL-Backed �Web Applications
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Example: Gaming Application
	Eager Migration
	Eager Migration
	Eager Migration
	Eager Migration
	Eager Migration
	Eager Migration
	lazy evolution �with object-noSQL mappers
	Lazy Migration�in Datalution
	Lazy Migration�in Datalution
	Lazy Migration�in Datalution
	Lazy Migration�in Datalution
	Lazy Migration�in Datalution
	Lazy Migration�in Datalution
	Datalog Model�(nonrecursive, stratified)
	Foliennummer 23
	Datalution: �datalog-based

