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Our	work	at	a	glance

o Approach	and	tool	for	the	automated	verification	
of	topology-based	data-intensive	applications.
§ Based	(so	far)	on	temporal	logic	model
§ Performs	automated	transformation	from	high	level	
application	description	to	formal	model

§ Enables	verification	of	safety	properties
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Roadmap

§ Context
• Quality	assurance	in	DIA

§ Research	Design
• Research	question
• Our	approach

§ Conclusions
• Contributions
• Future	works
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CONTEXT

Quality	Analysis	and	Verification	for	data-intensive	
applications
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Formal	Verification

o Given	a	Model	M	and	a	Property	specification	P,
verification	checks	whether	P	holds	in	M.

o M	and	P	can	be	expressed	in	many	different	ways
§ various	kinds	of	automata	(operational	models)
§ various	kinds	of	logics	(descriptive	models)
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Data-Intensive	Applications	(DIA)
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DICE	Project

o Horizon	2020	Research	&	Innovation	Action	(RIA)
§ Quality-Aware	Development	for	Big	Data	applications
§ Feb	2015	- Jan	2018,	4M	Euros	budget
§ 9	partners	(Academia	&	SMEs),	7	EU	countries
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Quality	Dimensions	in	DICE

o Reliability

o Efficiency

o Safety	&
Privacy
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§ Availability
§ Fault-tolerance

§ Performance
§ Costs

§ Verification	
§ Data	protection



Big	Data	Technologies
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Our	positioning	in	DICE	framework	(2)
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RESEARCH	DESIGN

Quality	Analysis	and	Verification	for	data-intensive	
applications

11



Research	question

“How	can	we	verify	safety	properties	
of	a	data-intensive	application?”
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State	of	the	art

o Formal	verification	of	distributed	systems	is	a	major	
research	area	in	software	engineering

o Few	works	trying	to	address	formal	verification	in	the	
context	of	DIA
§ Main	focus	on	verifying	application-independent	properties	
related	to	specific	frameworks	
• Reliability	and	load	balancing	of	MapReduce
• Validity	of	messaging	flow	in	MapReduce

§ no	modeling	and	verification	of	application-dependent
properties

o Verification	tools	have	been	used	as	verification	engines	
to	build	formal	verification	techniques	for	UML	models	
§ Few	of	them	deal	with	real-time	constraints.	
§ Mainly	focused	on	functional	requirements.
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Our	Approach

o Focus	on	a	specific	set	of	technologies
§ Topology-based	streaming	applicationsà Apache	
Storm

o Identify	safety	issues	
o Devise	a	formal	model

§ Having	an	appropriate	level	of	abstraction
§ Allowing	to	capture	meaningful	system	behavior	and	
properties

§ Using	a	formalism	that	enables	automatic	verification
o Define	a	tool-supported	mechanism	for	formal	
verification
§ Starting	from	high	level	application	description	
(annotated	UML)

14



Apache	Storm

o Open	Source	Distributed	Stream	Processing	
System

o Analytics,	Log	Event	processing,	etc..
o Reliability,	at-least-one	semantics
oWide	adoption	in	production	
oMain	concepts

§ Streams
§ Topologies
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Storm	Applications

o Applications	defined	by	means	of	Topologies,	
graphs	of	computations	composed	of:
§ Spouts

• Sources	of	data	streams	(tuples)	

§ Bolts
• Calculate,	Filter,	Aggregate,	Join,	Talk	to	databases
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Safety	Issues

o Important	requirements	for	streaming	applications	
§ Latency
§ Throughput

o Critical	points
§ incorrect	design	of	timing	constraints	
§ node	failures

o might	cause	
§ latency	in	processing	tuples
§ monotonic	growth	of	the	size	of	used	memory	(queues).
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DICE	Verification	Tool

oWe	want	to
§ Verify	whether	a	topology	reaches	an	unwanted	
configuration
• e.g.,	where	bolts	are	not	able	to	process	incoming	tuples	on	
time

§ Let	the	user	specify	the	topology	by	means	of	high	
level	models	(UML)
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D-VerT - DICE	Verification	Tool
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DICE	DTSM::Storm	UML	profile
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D-VerT - DICE-profiled	UML	Class	Diagram
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DTSM2Json	module

o Relies	on	Eclipse	UML2 Java	library
o “Navigates”	DTSM	class	diagram	and	extract	topology	structure	

and	information
o Gathers	verification	option	from	Eclipse	launch	configuration
o Maps	topology	components	to	Java	objects
o Directly	converts	Java	objects	to	JSON	object	via	gson library
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Json2MC	- Module

o Python	component	based	on	Jinja2	
templating	engine

o Generates	Formal	Model	based	on	the	content	of	
JSON	file	and	on	the	selected	template	(TL	or	
FOL).
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Verification	Approaches
o Bounded	Satisfiability	Checking	(BSC)

§ Input:	
• Temporal	logic	formula	(Model)
• Negated	Property	over	time	

§ Outcome:
• SAT	à counterexample	trace
• UNSAT	à Property	holds	for	the	considered	time	bound

§ We	use	Zot	verification	tool	(https://github.com/fm-polimi/zot)
o Reachability	Checking	(WIP)

§ Model	defined	by	FOL	Array	based	system	
• Set	of	initial	states and	transitions
• Formula	defining	undesired	states	(Negated	property)

§ Outcome:
• UNSAFE	à Trace	showing	that	undesired	state	are	reachable	from	initial	
states

• SAFE	à No	undesired	state	can	be	reache from	initial	states	
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D-VerT – Output	trace

o When	at	least	one	queue	grows	with	an	unbounded	
trend
§ an	infinite	ultimately	periodic	model	is	found
§ Output	Parser	provides	graphical	counterexample	trace
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CONCLUSIONS 26



Contributions

oWe	enabled	automatic	verification	on	topology-
based streaming	applications	by
§ Defining	a	formal	model	based	on	temporal	logic
§ defining	automatic	mechanisms	for	translating	to	
the	formal	model	from	a	high	level	description.

§ extending	Zot	Verification	tool	to	support	the	
formalism	and	carry	out	BSC	on	it
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Preliminary	results

o Validation	through	open	source	and	industrial	use	cases
§ Meaningful	qualitative	results	in	identifying	critical	points	in	
topology	design

§ Execution	time	strongly	depends	on	the	size	of	the	topology	
and	on	the	configurations	of	single	components
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http://dice-project.github.io/DICE-Verification/



Ongoing	and	Future	works

o Identification	and	verification	of	further	properties
§ Privacy	and	Security	

o Tool	improvements
o Modeling	different	technologies	(Spark,	CEP,	Tez)
o Developing	FOL	model
o New	theoretical	results	on	the	correctness	and	
completeness	of	the	formal	analysis
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Questions?
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Thank	you!


