
DICE
Horizon	2020		Research	&	Innovation	Action
Grant	Agreement	no.	644869
http://www.dice-h2020.eu

Funded	by	the	Horizon	2020
Framework	Programme	of	the	European	Union

A	Tool	for	Verification	of	Big-Data	
Applications

Jul	21th,	2016

QUDOS	2016
Saarbrücken,	Germany

M.M.	Bersani,	F.	Marconi,	M.G.	Rossi
Politecnico	di	Milano

Milan,	Italy

Madalina	Erascu
Institute	e-Austria	Timisoara	&	
Western	University	of	Timisoara

Timisoara,	Romania

Our	work	at	a	glance

o Approach	and	tool	for	the	automated	verification	
of	topology-based	data-intensive	applications.
§ Based	(so	far)	on	temporal	logic	model
§ Performs	automated	transformation	from	high	level	
application	description	to	formal	model

§ Enables	verification	of	safety	properties

2

Roadmap

§ Context
• Quality	assurance	in	DIA

§ Research	Design
• Research	question
• Our	approach

§ Conclusions
• Contributions
• Future	works

3

CONTEXT

Quality	Analysis	and	Verification	for	data-intensive	
applications

4

Formal	Verification

o Given	a	Model	M	and	a	Property	specification	P,
verification	checks	whether	P	holds	in	M.

o M	and	P	can	be	expressed	in	many	different	ways
§ various	kinds	of	automata	(operational	models)
§ various	kinds	of	logics	(descriptive	models)

5

Data-Intensive	Applications	(DIA)

6

DICE	Project

o Horizon	2020	Research	&	Innovation	Action	(RIA)
§ Quality-Aware	Development	for	Big	Data	applications
§ Feb	2015	- Jan	2018,	4M	Euros	budget
§ 9	partners	(Academia	&	SMEs),	7	EU	countries

7

Quality	Dimensions	in	DICE

o Reliability

o Efficiency

o Safety	&
Privacy

8

§ Availability
§ Fault-tolerance

§ Performance
§ Costs

§ Verification	
§ Data	protection

Big	Data	Technologies

Cloud	(Priv/Pub)
`

9

DICE	IDE

Profile

Plugins

Sim Ver Opt

DPIM

DTSM

DDSM																			TOSCAMethodology

Deploy Config Test

M
o
n

Anomaly
Trace

Iter.	Enh.

Data	Intensive	Application	(DIA)

Cont.Int. Fault	Inj.

WP4

WP3

WP2

WP5

WP1 WP6	- Demonstrators

Our	positioning	in	DICE	framework	(1)

Our	positioning	in	DICE	framework	(2)

10Featuring	the	DICE	H2020	EU	Project

DICE DPIM
Meta-Model

Scenario: Tech.
Comparison

DICE
DTSM
Meta-
Model

Big-Data Technological
Development

DICE
DDSM
Meta-
Model

Big-Data Physical
AssetsDICE

DMON

Operations

Spark

DICE
Process Views

Hadoop
MR

DICE
TOSCA
Meta-
Model

Big-Data Technological
Deployment (TOSCA)

DICE
DTSM
Meta-
Model

Big-Data Technological
 Logic

Safety
Verification
 with ZOT

Reliability and
Resource Management

with GreatSPN
Hadoop MR
 Monitoring

Storm
Monitoring

LEGENDA
Software

Architecture Views
Model-to-Model
Transformation

Storm Oryx 2

Scenario:
Deployment

Safety Reliability

Resource
Management

Config.
Optimization

Spark
Monitoring

Oryx 2
Monitoring

Configuration
Optimisation
with BO4CO

JSON or YAML
File Exchange

Model-to-Text
Transformation

TOSCA *.yaml
Blueprint

RESEARCH	DESIGN

Quality	Analysis	and	Verification	for	data-intensive	
applications

11

Research	question

“How	can	we	verify	safety	properties	
of	a	data-intensive	application?”

12

State	of	the	art

o Formal	verification	of	distributed	systems	is	a	major	
research	area	in	software	engineering

o Few	works	trying	to	address	formal	verification	in	the	
context	of	DIA
§ Main	focus	on	verifying	application-independent	properties	
related	to	specific	frameworks	
• Reliability	and	load	balancing	of	MapReduce
• Validity	of	messaging	flow	in	MapReduce

§ no	modeling	and	verification	of	application-dependent
properties

o Verification	tools	have	been	used	as	verification	engines	
to	build	formal	verification	techniques	for	UML	models	
§ Few	of	them	deal	with	real-time	constraints.	
§ Mainly	focused	on	functional	requirements.

13

Our	Approach

o Focus	on	a	specific	set	of	technologies
§ Topology-based	streaming	applicationsà Apache	
Storm

o Identify	safety	issues	
o Devise	a	formal	model

§ Having	an	appropriate	level	of	abstraction
§ Allowing	to	capture	meaningful	system	behavior	and	
properties

§ Using	a	formalism	that	enables	automatic	verification
o Define	a	tool-supported	mechanism	for	formal	
verification
§ Starting	from	high	level	application	description	
(annotated	UML)

14

Apache	Storm

o Open	Source	Distributed	Stream	Processing	
System

o Analytics,	Log	Event	processing,	etc..
o Reliability,	at-least-one	semantics
oWide	adoption	in	production	
oMain	concepts

§ Streams
§ Topologies

- 15 -

Storm	Applications

o Applications	defined	by	means	of	Topologies,	
graphs	of	computations	composed	of:
§ Spouts

• Sources	of	data	streams	(tuples)	

§ Bolts
• Calculate,	Filter,	Aggregate,	Join,	Talk	to	databases

- 16 -

Safety	Issues

o Important	requirements	for	streaming	applications	
§ Latency
§ Throughput

o Critical	points
§ incorrect	design	of	timing	constraints	
§ node	failures

o might	cause	
§ latency	in	processing	tuples
§ monotonic	growth	of	the	size	of	used	memory	(queues).

17

DICE	Verification	Tool

oWe	want	to
§ Verify	whether	a	topology	reaches	an	unwanted	
configuration
• e.g.,	where	bolts	are	not	able	to	process	incoming	tuples	on	
time

§ Let	the	user	specify	the	topology	by	means	of	high	
level	models	(UML)

18

D-VerT - DICE	Verification	Tool

19

DICE	DTSM::Storm	UML	profile

20

D-VerT - DICE-profiled	UML	Class	Diagram

21

DTSM2Json	module

o Relies	on	Eclipse	UML2 Java	library
o “Navigates”	DTSM	class	diagram	and	extract	topology	structure	

and	information
o Gathers	verification	option	from	Eclipse	launch	configuration
o Maps	topology	components	to	Java	objects
o Directly	converts	Java	objects	to	JSON	object	via	gson library

22

Json2MC	- Module

o Python	component	based	on	Jinja2	
templating	engine

o Generates	Formal	Model	based	on	the	content	of	
JSON	file	and	on	the	selected	template	(TL	or	
FOL).

23

————————
————————
————————
————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————

————————
————————
————————
————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————

TL Model Zot

JSON2MC

<—>
 <—>
 <———>
 ————
 —————————
 </———>
 </—>
 <————————>
 <———————>
 </——————>
 <—>
 </—>
 </————————>
</—>

JSON

————————
————————
————————
————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————

TL Model
Template

————————
————————
————————
————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————

FOL Model
Template

————————
————————
————————
————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————

————————
————————
————————
————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————

FOL Model Cubicle

X

WIP

Verification	Approaches
o Bounded	Satisfiability	Checking	(BSC)

§ Input:	
• Temporal	logic	formula	(Model)
• Negated	Property	over	time	

§ Outcome:
• SAT	à counterexample	trace
• UNSAT	à Property	holds	for	the	considered	time	bound

§ We	use	Zot	verification	tool	(https://github.com/fm-polimi/zot)
o Reachability	Checking	(WIP)

§ Model	defined	by	FOL	Array	based	system	
• Set	of	initial	states and	transitions
• Formula	defining	undesired	states	(Negated	property)

§ Outcome:
• UNSAFE	à Trace	showing	that	undesired	state	are	reachable	from	initial	
states

• SAFE	à No	undesired	state	can	be	reache from	initial	states	

24

D-VerT – Output	trace

o When	at	least	one	queue	grows	with	an	unbounded	
trend
§ an	infinite	ultimately	periodic	model	is	found
§ Output	Parser	provides	graphical	counterexample	trace

25

CONCLUSIONS 26

Contributions

oWe	enabled	automatic	verification	on	topology-
based streaming	applications	by
§ Defining	a	formal	model	based	on	temporal	logic
§ defining	automatic	mechanisms	for	translating	to	
the	formal	model	from	a	high	level	description.

§ extending	Zot	Verification	tool	to	support	the	
formalism	and	carry	out	BSC	on	it

27

Preliminary	results

o Validation	through	open	source	and	industrial	use	cases
§ Meaningful	qualitative	results	in	identifying	critical	points	in	
topology	design

§ Execution	time	strongly	depends	on	the	size	of	the	topology	
and	on	the	configurations	of	single	components

28

http://dice-project.github.io/DICE-Verification/

Ongoing	and	Future	works

o Identification	and	verification	of	further	properties
§ Privacy	and	Security	

o Tool	improvements
o Modeling	different	technologies	(Spark,	CEP,	Tez)
o Developing	FOL	model
o New	theoretical	results	on	the	correctness	and	
completeness	of	the	formal	analysis

29

Questions?

30

Thank	you!

